High Performance Polyethylene Fiber - An Overview

High Performance Polyethylene Fiber - An Overview
Muhammad Imteaz Anjum
School of Textile and Design
University of Management and Technology Lahore, Pakistan
Email: imteaz.anjum@gmail.com
Cell: +92332-2424424 

Gel-spun polyethylene fibres are ultra-strong, high-modulus fibres that are based on the simple and flexible polyethylene molecule. They are called high-performance polyethylene (HPPE) fibres, high-modulus polyethylene (HMPE) fibres or sometimes extended chain polyethylene (ECPE) fibres. The gel-spinning process uses physical processes to make available the high potential mechanical properties of the molecule. This has been quite successful but there is still ample room for improvement.
Polyethylene fiber
Basic Structure
The polyethylene is a long chain aliphatic hydrocarbon and it is thermoplastic. The Tg is approximately -120ºC. Tm depends upon the structure which ranges from 108-132ºC. It has high molecular weight alkane and has a good resistance to chemical attack. Because it is a crystalline material and does not interact with any liquids, there is no solvent at room temperature.
Basic structure of polyethylene
Manufacturing of polyethylene fibre:
Gel-spun high-performance polyethylene fibres are produced from polyethylene with a very high molecular weight (UHMW-PE). This material is chemically identical to normal high-density polyethylene (HDPE), but the molecular weight is higher than the commonly used PE grades. It is in the range that is used in abrasion-resistant engineering plastics. Different from all other high-performance fibres, the molecules in high performance polyethylene fibres are not ‘preformed’ to form high tenacity and modulus fibres. In aramids and comparable fibres, the molecules tend to form rod-like structures and these need only be oriented in one direction to form a strong fibre. Polyethylene has much longer and flexible molecules and only by physical treatments can the molecules be forced to assume the straight (extended) conformation and orientation in the direction of the fibre. All the physical and chemical properties of polyethylene remain in the fibres. The differences result from the high chain extension (stretching), the high orientation and the high crystallinity. The gel-spun fibres have properties that are superior to those made by solid-state processes.

Gel Spinning
High performance polyethylene fibres are commercially produced under the trade names Dyneemaby DSM High Performance Fibers in the Netherlands and by the Toyobo/DSM joint venture in Japan, and Spectra by Honeywell (formerly Allied Signal or Allied Fibers) in the USA. The basic theory about what a super-strong polyethylene fibre should look like was already available in the 1930s from the ideas of Carothers, but it took almost half a century to produce HPPE fibres.1 The basic theory of how to produce a super-strong fibre from a polymer such as polyethylene is easy to understand. In normal polyethylene the molecules are not orientated and are easily torn apart. To make strong fibres, the molecular chains must be stretched, oriented and crystallised in the direction of the fibre. Furthermore, the molecular chains must be long to have sufficient interaction and for this reason polyethylene with an ultra-high molecular weight (UHMW-PE) is used as the starting material. Usually extension and orientation are realised by drawing. The problem is that spinning these fibres from the melt is almost impossible due to the extremely high melt viscosity. Furthermore, the drawing of a melt processed UHMW-PE is only possible to a very limited extent owing to the very high degree of entanglement of the molecular chains. In the gel spinning process these two problems are solved:the molecules are dissolved in a solvent and spun through a spinneret. In the solution the molecules become disentangled and remain in that state after the solution is spun and cooled to give filaments. Because of its low degree of entanglement, the gel spun material can be drawn to a very high extent. The main steps in the process are the continuous extrusion of a solution of ultra high-molecular weight polyethylene (UHMW-PE) Spinning of the solution, gelation and crystallization of the UHMW-PE. This can be done either by cooling and extraction or by evaporation of the solvent. Super drawing and removal of the remaining solvent gives the fibre its final properties but the other steps are essential in the production of a fibre with good characteristics. In the gel-spinning process, not only do all the starting parameters have an influence on the final properties of the fibre, the different process steps also influence all the following stages in the production of the fibre. So, starting from the same principles, Dyneema and Spectra may use very different equipment to produce comparable fibres.

Spinning Solution
With long-chain, flexible polymers the high orientation required can be obtained by drawing up to a very high draw ratio (50–100 times). Melt processed UHMW-PE can be drawn up to five times only, as the interaction between the molecular chains is too high because of the molecular entanglements. In solution, the molecules disentangle but there remain a number of cross-overs determined by the concentration and the length of the molecules. The flexible molecules assume a roughly spherical shape with a diameter proportional to the cubic root of the molecular weight. For the UHMW-PE chains the diameter of such a ball is about 1% of the total chain length. As soon as strain is applied when the solution is pressed through the spinneret, the molecules are forced into more elongated form For maximum fibre strength, the polyethylene molecules should be as long as possible. From an economic point of view the concentration of the solution should be as high as possible. However, these two factors together result in a solution that has a viscosity that is far too high to spin. Careful optimisation of these parameters is an essential part of the process.

Gelation and crystallization
The solvent used in the polyethylene gel-spinning process should be a good solvent at high temperatures (>100°C) but at lower temperatures (<80°C) the polymer should easily crystallize from the solution. After the spinneret, the solution is cooled in the quench, the solvent is removed and a gel fibre is formed. This can be done by evaporation or by extraction of the solvent.

The final properties of the fibre in the gel-spinning process are achieved in the super drawing stage. All the preceding steps are needed to make this possible. The strength and modulus are directly related to the draw ratio. The maximum attainable draw ratio appears to be related to the molecular weight and the concentration. The attainable draw ratio increases with decreasing concentration, but for each molecular weight there is a minimum concentration below which drawing is not possible, due to insufficient molecular overlap.

A. Tensile properties: The primary properties of the Dyneemaand Spectra fibres are high strength and high modulus in combination with the low density. HPPE fibres have a density slightly less than one, so the fibre floats on water. Whereas the strength and modulus are already very high. The tenacity is 10 to 15 times that of good quality steel and the modulus is second only to that of special carbon. Elongation at break is relatively low, as for other high-performance fibres, but owing to the high tenacity, the energy to break is high.

B. Energy absorption: Dyneema and Spectra fibres can absorb extremely high amounts of energy. This property is utilized in products for ballistic protection. But it makes the fibre equally suited for products such as cut-resistant gloves and motor helmets. The fibres can also be used to improve the impact strength of carbon or glass fibre-based composites. In these applications, not only the high tenacity is used but also the high energy absorption.

C. Fatigue Fatigue: is very important in, for example, rope applications. HPPE fibres are the first high-performance fibres that not only have a high tenacity but that also have tension and bending fatigue properties comparable with the commonly used polyamide and polyester grades in ropes.

D. Abrasion resistance: Abrasion resistance is very important in ropes, also in gloves. In many of applications it is at least one of the factors that determines wear and tear and so the service life. The high molecular weight polyethylene used for HPPE fibres is also a well-known engineering plastic.

E. Effects of water: Polyethylene is not hygroscopic and does not absorb water.The fibres have a very low porosity, therefore water absorption in the fibre is negligible.

F. Chemical resistance: HPPE fibres are produced from polyethylene and do not contain any aromatic rings or any amide,hydroxylic or other chemical groups that are susceptible to attack by aggressive agents.The result is that polyethylene and especially highly crystalline, high molecular weight polyethylene is very resistant against chemicals.

Applications of polyethylene fibres:
  1. Medical implants
  2. Cable and marine ropes
  3. Sail cloth
  4. Composites like Pressure vessel boat hulls, sports equipment, impact shields
  5. Fish netting
  6. Concrete reinforcement
  7. Protective clothing
  8. Can be used in radar protective cover because of its low dielectric constant
  9. Can be used as a lining material of a pond which collects evaporation of water and containment from industrial plants.
  1. (2012). Retrieved 2015, from https://en.wikipedia.or: https://en.wikipedia.org/wiki/Ultra-high-molecular-weight_polyethylene
  2. (2013). Retrieved 2015, from textilelearner.blogspot.com: http://textilelearner.blogspot.com.tr/2013/02/polyethylene-fiber-properties-of.html
  3. Hearle, J. W. (2001). High Performance Fibers. cambirige england: woodhead publishing limited .
  4. (2001). Retrieved 2015, from http://nptel.ac.in/: http://nptel.ac.in/courses/116102026/synthetic%20fibers-m7/polyethylene.htm 


Comment here

Textile Learner is the largest Textile Blog over the net. It is an ultimate reference for textile students. It describes textile articles in comprehensive. It also supplies news on latest textile technology, educational institute news of the world.