Bursting Strength Test | Diaphragm of Bursting Test

Bursting Strength
Tensile strength tests are generally used for woven fabrics where there are definite warp and weft directions in which the strength can be measured. However, certain fabrics such as knitted materials, lace or non-wovens do not have such distinct directions where the strength is at a maximum. Bursting strength is an alternative method of measuring strength in which the material is stressed in all directions at the same time and is therefore more suitable for such materials. There are also fabrics which are simultaneously stressed in all directions during service, such as parachute fabrics, filters, sacks and nets, where it may be important to stress them in a realistic manner. A fabric is more likely to fail by bursting in service than it is to break by a straight tensile fracture as this is the type of stress that is present at the elbows and knees of clothing.

When a fabric fails during a bursting strength test it does so across the direction which has the lowest breaking extension. This is because when stressed in this way all the directions in the fabric undergo the same extension
so that the fabric direction with the lowest extension at break is theone that will fail first. This is not necessarily the direction with the lowest strength.

Diaphragm of Bursting Test

The British Standard describes a test in which the fabric to be tested is clamped over a rubber diaphragm by means of an annular clamping ring and an increasing fluid pressure is applied to the underside of the diaphragm until the specimen bursts. The operating fluid may be a liquid or a gas.

Two sizes of specimen are in use, the area of the specimen under stress being either 30mm diameter or 113mm in diameter. The specimens with the larger diameter fail at lower pressures (approximately one-fifth of the 30mm diameter value). However, there is no direct comparison of the results obtained from the different sizes. The standard requires ten specimens to be tested.

Bursting Strength Test
In the test the fabric sample is clamped over the rubber diaphragm and the pressure in the fluid increased at such a rate that the specimen bursts within 20 ± 3 s. The extension of the diaphragm is recorded and another test is carried out without a specimen present. The pressure to do this is noted and then deducted from the earlier reading.

The following measurements are reported:

  1. Mean bursting strength kN/m2
  2. Mean bursting distension mm
  3. Liquid
  4. Piston
  5. Rubber
  6. diaphragm
  7. Specimen
  8. Clamp
The US Standard is similar using an aperture of 1.22 ± 0.3 in (31 ± 0.75mm) the design of equipment being such that the pressure to inflate the diaphragm alone is obtained by removing the specimen after bursting. The test requires ten samples if the variability of the bursting strength is not known.

The disadvantage of the diaphragm type bursting test is the limit to the extension that can be given to the sample owing to the fact that the rubber diaphragm has to stretch to the same amount. Knitted fabrics, for which the
method is intended, often have a very high extension. 
Sharing Knowledge: Students, teachers and professionals can publish your article here. It is a platform to express your knowledge throughout the world. For details: Submit Article


Mazharul Islam Kiron is a textile consultant and researcher on online business promotion. He is working with one European textile machinery company as a country agent. He is also a contributor of Wikipedia.

Let's Get Connected: LinkedIn | Facebook | Google Plus

Back To Top